Fabrication of Hypericin Imprinted Polymer Nanospheres via Thiol-Yne Click Reaction
نویسندگان
چکیده
To fabricate molecularly imprinted polymer nanospheres via click reaction, five different clickable compounds were synthesized and two types of click reactions (azide-alkyne and thiol-yne) were explored. It was found that molecularly imprinted polymer nanospheres could be successfully synthesized via thiol-yne click reaction using 3,5-diethynyl-pyridine (1) as the monomer, tris(3-mercaptopropionate) (tri-thiol, 5) as the crosslinker, and hypericin as the template (MIP–NSHs). The click polymerization completed in merely 4 h to produce the desired MIP–NSHs, which were characterized by FTIR, SEM, DLS, and BET, respectively. The reaction conditions for adsorption capacity and selectivity towards hypericin were optimized, and the MIP–NSHs synthesized under the optimized conditions showed a high adsorption capacity (Q = 6.03 μmol·g−1) towards hypericin. The imprinting factors of MIP–NSHs towards hypericin, protohypericin, and emodin were 2.44, 2.88, and 2.10, respectively.
منابع مشابه
Surface glycosylation of polymer membrane by thiol-yne click chemistry for affinity adsorption of lectin.
We present a novel approach to constructing glycosylated surface for microporous membrane. Carbohydrate derivative can be facilely bound onto the alkyne-modified membrane surface via thiol-yne click chemistry. The glycosylated membrane surface shows an excellent affinity adsorption to lectin on the basis of carbohydrate-protein recognition.
متن کاملFacile Image Patterning via Sequential Thiol−Michael/Thiol−Yne Click Reactions
Freestanding substrates with high refractive index modulation, good oxygen resistance, and low volume shrinkage are critical in photolithography for the purpose of high density data storage, image patterning and anticounterfeiting. Herein, we demonstrate a novel paradigm of direct holographic image patterning via the radical-mediated thiol− yne click reaction subsequent to the base-catalyzed th...
متن کاملConstruction of a versatile and functional nanoparticle platform derived from a helical diblock copolypeptide-based biomimetic polymer.
Sequential polymerization of N-carboxyanhydrides accelerated by nitrogen flow is utilized to generate a novel well-defined diblock copolypeptide (PDI = 1.08), with incorporation of alkyne-functionalized side-chain groups allowing for rapid and efficient thiol-yne click-type modifications, followed by self-assembly into nanopure water to construct a helical polypeptide-based versatile and functi...
متن کاملFabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin
A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...
متن کاملMultifaceted and route-controlled "click" reactions based on vapor-deposited coatings.
"Click" reactions provide precise and reliable chemical transformations for the preparation of functional architectures for biomaterials and biointerfaces. The emergence of a multiple-click reaction strategy has paved the way for a multifunctional microenvironment with orthogonality and precise multitasking that mimics nature. We demonstrate a multifaceted and route-controlled click interface u...
متن کامل